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Channel

Definition (Channel)

A channel is defined by Λ = (X ,Y ,Π), where X is the set of input
alphabets, Y is the set of output alphabets and Π is the transition
probability of obtaining a symbol y ∈ Y if the input symbol is
x ∈ X .

For example: A Binary Symmetric Channel with flipping
probability p (i.e., p-BSC) is a channel with X = {0, 1} and
Y = {0, 1}, and the probability of obtaining b given input
symbol b is (1− p) and the probability of obtaining (1− b)
given input symbol b is p
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Channel Capacity

Definition (Capacity)

The capacity of a channel is defined by:

C (Λ) = max
Dist p over X

H(Y )− H(Y |X )

Note that it is not necessary that the maximization happens
when p is the uniform distribution over X
For p-BSC, the maximization happens for p = UX and the
capacity is 1− h(p)
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Shannon’s Channel Coding Theorem

Theorem (Shanon’s Channel Coding Theorem)

For every channel Λ, there exists a constant C = C (Λ), such that
for all 0 6 R < C , there exists n0, such that for all n > n0, there
exists encoding and decoding algorithms Enc and Dec such that:

Enc : {1, . . . ,M = 2Rn} → X n, and
Pr[Dec(Π(Enc(m))) = m] > 1− exp(−Ω(n))

English Version: For every channel, there exists a constant
capacity, such that for all rate less than the capacity, (for large
enough n), we can reliably push information across the channel
at that rate
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Coding Theorem for BSC

Let Z (n, p) be n independent trials of a Bernoulli variable with
probability of heads being p

Theorem
For all p, there exists C = 1− h(p), such that for all
0 6 R = 1− h(p)− ε and ε > 0, there exists n0, such that for all
n > n0, there exists encoding and decoding algorithms Enc and Dec
such that:

Enc : {0, 1}Rn → {0, 1}n, and
Prz∼Z(n,p)[Dec(Enc(m) + z) = m] > 1− exp(−Ω(n))

In fact, there exists a binary linear code that achieves this rate
Further, a random binary linear code achieves this rate with
probability exponentially close to 1
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Proof of Coding Theorem for BSC

Define k = (1− h(p)− ε)n and ` = k + 1
We shall show that there exists an encoding scheme Enc∗

using probabilistic methods
Let Enc : {0, 1}` → {0, 1}n be a random map
Let Dec(y) be the maximum likelihood decoding, i.e. it
decodes y to the nearest codeword
Fix a message m ∈ {0, 1}`
We are interested in: Expected (over random Enc) decoding
error probability

err(m) := E
Enc

[
Pr

z∼Z(n,p)
[Dec(Enc(m) + z) 6= m]

]
Note that, we have:

err(m) 6 E
Enc

[
Pr

z∼Z(n,p)
[wt(z) > (p + ε)n]

+ Pr
z∼Z(n,p)

[wt(z) 6 (p + ε)n ∧ Dec(Enc(m) + z) 6= m]

]
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Proof of Coding Theorem for BSC (continued)

First error term is at most exp(−Ω(ε2n)) by Chernoff Bound
Let p(z) be the probability of z ∼ Z (n, p)

1(E ) represents the indicator variable for the event E
So, we have: err(m) 6 EEnc [err1 + err2(m,Enc)], where:

err1 = exp(−Ω(ε2n))

err2(m,Enc) =
∑

z∈Ball2(n,(p+ε)n)

p(z) · 1(Dec(Enc(m) + z) 6= m)

By linearity of expectation, we get:
err(m) 6 exp(−Ω(ε2n)) + EEnc [err2(m,Enc)]
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Proof of Coding Theorem for BSC (continued)

We need to bound only: EEnc [err2(m,Enc)], which turns out
to be (by swapping

∑
and E operators):∑

z∈Ball2(n,(p+ε)n)

p(z) · E
Enc

[1(Dec(Enc(m) + z) 6= m)]

=
∑

z∈Ball2(n,(p+ε)n)

p(z) · E
Enc

[
∃m′ 6= m : 1(Dec(Enc(m) + z) = m′)

]
=

∑
z∈Ball2(n,(p+ε)n)

p(z) · Pr
Enc

[
∃m′ 6= m : Dec(Enc(m) + z) = m′

]
6

∑
z∈Ball2(n,(p+ε)n)

p(z) · Pr
Enc

[
∃m′ 6= m : c ′ ∈ c + Ball2(n, (p + ε)n)

]
Here c and c ′, respectively, are Enc(m) and Enc(m′)
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Proof of Coding Theorem for BSC (continued)

By union bound, we get:

6
∑

z∈Ball2(n,(p+ε)n)

p(z)
∑

m′ : m′ 6=m

Pr
Enc

[
c ′ ∈ c + Ball2(n, (p + ε)n)

]
6

∑
z∈Ball2(n,(p+ε)n)

p(z)
∑

m′ : m′ 6=m

Vol2(n, (p + ε)n)

2n

6
∑

z∈Ball2(n,(p+ε)n)

p(z) · 2` · 2
h(p)n

2n
=

∑
z∈Ball2(n,(p+ε)n)

p(z)2 · 2−εn

= 2 · 2−εn = exp(−Ω(n))

Overall, we get: For a fixed m, the expected decoding error
(over a randomly chosen encoding function) is
err(m) 6 EEnc [err1 + err2(m,Enc)] 6 exp(−Ω(n))
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Proof of Coding Theorem for BSC (continued)

Therefore,

E
Enc

 E
m

$←{1,...,2`}

[
Pr

z∼Z(n,p)
[Dec(Enc(m) + z) 6= m]

]
= E

m
$←{1,...,2`}

[
E

Enc

[
Pr

z∼Z(n,p)
[Dec(Enc(m) + z) 6= m]

]]
6 E

m
$←{1,...,2`}

[exp(−Ω(n))] = exp(−Ω(n))

So, there exists an Enc∗ such that the expected (over random
messages) decoding error probability is at most exp(−Ω(n))
By pigeon hole principle, for this choice of Enc∗, at most half
the messages in {1, . . . , 2`} have decoding error probability
> 2 · exp(−Ω(n))
So, for this choice of Enc∗ there exists a subset of {1, . . . , 2`}
of size 2k such that each message has decoding error
probability 6 2 · exp(−Ω(n)) = exp(−Ω(n))
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Additional Comments

If we show that a random linear encoding Enc succeeds then
we do not need to perform an averaging over m, because the
decoding error probability for a particular m is identical to the
decoding error probability for any m (because, in linear codes,
“the view from a codeword c about the universe is identical to
the view of any codeword c about the universe”)
We can also show that for 1− exp(−Ω(n)) fraction of Enc the
decoding error is exponentially small (because, decoding error
is bounded by 1 and we can perform an averaging argument)
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Converse of Shannon’s Channel Coding Theorem

Intuitively,

Theorem (Converse of Shannon’s Channel Coding Theorem)

For any channel Λ, there exists C = C (Λ), such that for all R > C ,
and any encoding and decoding functions Enc and Dec,
respectively, (for all n) the decoding error is at least a constant
when m

$←{1, . . . , 2Rn}
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