


Channel

Definition (Channel)

A channel is defined by A = (X, Y, ), where X is the set of input
alphabets, Y is the set of output alphabets and 1 is the transition
probability of obtaining a symbol y € Y if the input symbol is

x € X.

@ For example: A Binary Symmetric Channel with flipping
probability p (i.e., p-BSC) is a channel with X = {0,1} and
Y ={0,1}, and the probability of obtaining b given input
symbol b is (1 — p) and the probability of obtaining (1 — b)
given input symbol b is p
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Channel Capacity

Definition (Capacity)

The capacity of a channel is defined by:

C(/\) - Distrpizl(er X H( Y) - H(Y‘X)

@ Note that it is not necessary that the maximization happens
when p is the uniform distribution over X

@ For p-BSC, the maximization happens for p = Ux and the
capacity is 1 — h(p)
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Shannon's Channel Coding Theorem

Theorem (Shanon's Channel Coding Theorem)

For every channel A\, there exists a constant C = C(NA), such that
for all 0 < R < C, there exists ng, such that for all n > ng, there
exists encoding and decoding algorithms Enc and Dec such that:
e Enc: {1,...,M =2R"} — X" and
@ Pr[Dec(M(Enc(m))) = m] > 1 — exp(—(n))

o English Version: For every channel, there exists a constant
capacity, such that for all rate less than the capacity, (for large
enough n), we can reliably push information across the channel
at that rate
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Coding Theorem for BSC

Let Z(n, p) be n independent trials of a Bernoulli variable with
probability of heads being p

Theorem
For all p, there exists C = 1 — h(p), such that for all
0< R=1-h(p)—e and e > 0, there exists ng, such that for all
n > ng, there exists encoding and decoding algorithms Enc and Dec
such that:

e Enc: {0,1}*" - {0,1}", and

® Pr, z(np)[Dec(Enc(m) + z) = m] > 1 — exp(—£2(n))

@ In fact, there exists a binary linear code that achieves this rate

@ Further, a random binary linear code achieves this rate with
probability exponentially close to 1
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Proof of Coding Theorem for BSC

@ Define k=(1—h(p) —e)nand £ =k +1

@ We shall show that there exists an encoding scheme Enc*
using probabilistic methods

e Let Enc: {0,1}* — {0,1}" be a random map

o Let Dec(y) be the maximum likelihood decoding, i.e. it
decodes y to the nearest codeword

o Fix a message m € {0,1}*

@ We are interested in: Expected (over random Enc) decoding
error probability

err(m) = E [ Pr [Dec(Enc(m) + z) # m]]
Enc | z~Z(n,p)
o Note that, we have:

errf(m) < E [ Pr [wt(z) = (p+¢e)n]
Enc | z~Z(n,p)

+ ;(r )[wt(z) < (p+e¢e)n A Dec(Enc(m) + z) # m]]
zn n7p
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Proof of Coding Theorem for BSC (continued)

First error term is at most exp(—Q(g2n)) by Chernoff Bound
Let p(z) be the probability of z ~ Z(n, p)
1(E) represents the indicator variable for the event E

So, we have: err(m) < Egnc [err1 + erra(m, Enc)], where:

erry = exp(—Q(¢%n))

erry(m, Enc) = Z p(z) - 1(Dec(Enc(m) + z) # m)
zeBallz(n,(p+e)n)

@ By linearity of expectation, we get:
err(m) < exp(—(£2n)) + Egnc [erra(m, Enc)]
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Proof of Coding Theorem for BSC (continued)

@ We need to bound only: Egnc [err2(m, Enc)], which turns out
to be (by swapping ) and E operators):

Y. p2)- E [1(Dec(Enc(m) + 2) # m)
zeBallz(n,(p+e)n) ne

=[] ;

= p(z) - E [3m' # m: 1(Dec(Enc(m) + z) = m')]
Enc
zeBalla(n,(p+e)n)

= Z p(z) - Er [3m' # m: Dec(Enc(m) + z) = m']
z€Bally(n,(p-+e)n) ne

< p(z) - E‘r [3m’ # m: ¢’ € c+ Bally(n,(p + €)n)]
zeBallx(n,(p+¢)n) ne

r\

Here c and ¢/, respectively, are Enc(m) and Enc(m’)
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Proof of Coding Theorem for BSC (continued)

@ By union bound, we get:

< Z p(z) Z grc [ € ¢+ Bally(n, (p + £)n)]

zeBalla(n,(p+e)n) m': m'#m
Vola(n,(p+¢)n
Sy y Veintern
zeBalla(n,(p+e)n) m': m'#£m
, 2h)n o
< DL M@= Y p22:2
zeBallz(n,(p+e)n) zeBallz(n,(p+e)n)

=2.2""=exp(—Q(n))

@ Overall, we get: For a fixed m, the expected decoding error
(over a randomly chosen encoding function) is
err(m) < Egnc [err1 + erra(m, Enc)] < exp(—£2(n))
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Proof of Coding Theorem for BSC (continued)

@ Therefore,

Enc | 841,20y LZZ(MP)

E[ E [ Pr [DeC(EnC(mHZ)#m]H

- g [E[ Pr [Dec(Enc(m)+z)#m]H

mi{l,...,ﬂ} Enc |z~Z(n,p)
< E  [exp(=Q(n))] = exp(—£2(n))
m& (1,20

@ So, there exists an Enc* such that the expected (over random
messages) decoding error probability is at most exp(—£2(n))

@ By pigeon hole principle, for this choice of Enc*, at most half
the messages in {1,...,2‘} have decoding error probability
> 2-exp(—Q(n))

@ So, for this choice of Enc* there exists a subset of {1,...,2¢}
of size 2 such that each message has decoding error
probability < 2 - exp(—Q(n)) = exn(—Q(n))
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Additional Comments

o If we show that a random linear encoding Enc succeeds then
we do not need to perform an averaging over m, because the
decoding error probability for a particular m is identical to the
decoding error probability for any m (because, in linear codes,
“the view from a codeword ¢ about the universe is identical to
the view of any codeword ¢ about the universe”)

@ We can also show that for 1 — exp(—S2(n)) fraction of Enc the
decoding error is exponentially small (because, decoding error
is bounded by 1 and we can perform an averaging argument)
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Converse of Shannon's Channel Coding Theorem

Intuitively,

Theorem (Converse of Shannon’s Channel Coding Theorem)

For any channel A, there exists C = C(N), such that for all R > C,
and any encoding and decoding functions Enc and Dec,
respectively, (for all n) the decoding error is at least a constant

when m < {1,...,2f"}
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